
Programming Models for High Performance
Scientific Computing

Jeff Hammond

Leadership Computing Facility
Argonne National Laboratory

8 June 2010

Jeff Hammond Programming Models



Disclaimer

I wrote the published abstract when scheduled for
July. This talk covers more introductory material
and less implementation detail. Please interrupt
frequently.

These slides are shamefully texty for posterity. If
you want pictures, I will use the whiteboard.

All opinions are my own.

Jeff Hammond Programming Models



My background and other details

I was trained as a chemist but got pretty deep into
computer science through my work on NWChem,
which utilizes a variety of non-trivial software
technologies (e.g. automatic code generation, GAS
programming model, one-sided communication).

My slides and contact info are posted here:
https://wiki.alcf.anl.gov/index.php/User:Jhammond

Jeff Hammond Programming Models



Parallelism as a concept

Jeff Hammond Programming Models



What is parallelism?

Parallelism in computing generally refers to doing
multiple things at the same time.

Parallelism necessarily involves hardware.

Algorithms are not parallel, rather concurrent, but
everyone uses the terms interchangeably.

Concurrency in computing is not defined
unambiguously; asynchronity (uncorrelated in time)
is more useful.

Jeff Hammond Programming Models



Getting dressed in parallel I

How many operations does it take to put on a suit?

Tasks: shirt, jacket, pants, socks, shoes, tie, belt,
fedora.

In serial, one needs 8 steps to put on this outfit.

Dependences: shirt → tie, tie → jacket, socks →
shoes, pants → belt, pants → shoes, pants =
socks.

If we analyze concurrency, what is the best we can
do in parallel?

Jeff Hammond Programming Models



Audience participation time

Jeff Hammond Programming Models



Getting dressed in parallel II

Thread Step 1 Step 2 Step 3

1 shirt tie jacket
2 pants belt fedora
3 - socks shoes

This solution is not unique but it is optimal.

Thread Step 1 Step 2 Step 3

1 shirt tie jacket
2 - pants belt
3 socks fedora shoes

Because three steps are sequential, one cannot do
better than that overall.

Jeff Hammond Programming Models



Getting dressed in parallel III

But if you want to maximize efficiency of your
overall usage:

Thread Step 1 Step 2 Step 3 Step 4

1 shirt tie jacket fedora
2 socks pants belt shoes

With an increasing emphasis on power efficiency,
one may trade parallelism for efficiency at the chip
level. One has to decide if the 12.5% overhead of
the ideal stage in the maximally-parallel execution is
worth the 25% decrease in execution time. It looks
stupid here, but what if 1M people are getting
dressed in parallel?

Jeff Hammond Programming Models



Barriers to parallelism

Jeff Hammond Programming Models



Perfect parallelism I

There is no such thing as perfect parallelism unless
you remove yourself from the equation. Fully
asynchronous execution leaves you as the
bottleneck.

The most (computationally) scalable form of
parallelism involves an arbitrarily large number of
uncoupled tasks.

Jeff Hammond Programming Models



Perfect parallelism II

Example: input a list chemical structures, compute
the “score” of this compound with respect to
binding with a given protein (the drug-design
problem).

This works in part because size of the input and
output data are small with respect to the
intermediate computation.

Jeff Hammond Programming Models



Data dependencies

As in the suit example, parallelism is bounded by
concurrency, i.e. the maximum number of
asynchronous execution paths the algorithm has.

Enforcing data-dependencies with fine-granularity is
expensive due to bookkeeping overhead.

Enforcing data-dependencies with coarse-granularity
is expensive due to global sync e.g. MPI Barrier().

Jeff Hammond Programming Models



Communication overhead

Except for nearest-neighbor-exchange,
communication does not scale. All networks drag
under heavy-load (contention).

If everyone talks to one node, that node will be
overwhelmed as “everyone” becomes larger.

Collectives usually don’t scale. Even if you have a
tree network ala Blue Gene, memory becomes an
issue.

Jeff Hammond Programming Models



Load-balancing issues

It does not matter which process finishes first —
the job is done when the last process finishes.

The same problem applies to every single
synchronous operation in your code, including
collectives and blocking send/recv.

Most of the problem with collectives is not the
explicit time due to communication but implicit
time due to waiting on last process.

Jeff Hammond Programming Models



Scaling laws

Ttotal = Tserial +
Tparallel

Nproc

Strong-scaling (Amdahl):

lim
N→∞

Ttotal ≈ Tserial

Weak-scaling (Gustafson):

lim
N→∞

Ttotal ≈
Tparallel(Nproc)

Nproc

Jeff Hammond Programming Models



The programming model that
isn’t

Jeff Hammond Programming Models



MPI

MPI is not a programming model. Just because
smart people say it is does not make it true.

MPI is a communication protocol and does not care
what your data or execution model is.

Every programming model implementation that
exists today has been implemented using MPI,
including Charm++, Global Arrays and PGAS
(UPC, Chapel, X10).

Jeff Hammond Programming Models



MPI

Basic MPI usually the simple model of
local-data/local-execution with message-passing.

Master-worker programming model using collectives
or spinning-master is easy.

You can make MPI do anything with threads.

Jeff Hammond Programming Models



Parallelism in practice

Jeff Hammond Programming Models



Examples of parallel applications (paradigms)

(Swift):
http://www.ci.uchicago.edu/swift/

GFMC (ADLB):
http://www.cs.mtsu.edu/∼rbutler/adlb/

GPAW (MPI/ScaLAPACK):
https://wiki.fysik.dtu.dk/gpaw/

NWChem (GA/ARMCI):
http://www.emsl.pnl.gov/capabilities/computing/nwchem/

http://www.emsl.pnl.gov/docs/global/

http://www.emsl.pnl.gov/docs/parsoft/armci/

NAMD (Charm++):
http://www.ks.uiuc.edu/Research/namd/
http://charm.cs.uiuc.edu/

Jeff Hammond Programming Models



What is Swift?

Swift is a language which expresses a specific type
of parallelism in a very natural way:

Mapping of filesystem concepts within the
language

Explicit expression of data-dependencies

Run-time automation of parallel execution of
independent tasks

Run-time manages filesystem access in a smart
way

Does not attempt to support features for other
paradigms (e.g. message-passing)

Jeff Hammond Programming Models



Why use Swift?

It is not trivial to implement this type
asynchronous parallelism in MPI

Master-worker does not scale past a few
thousand processes (see GFMC)

If you write a script to run 100K file-accessing
tasks on your own, you will kill the filesystem

If you need a thumbtack, use a thumbtack, not
a nailgun

Jeff Hammond Programming Models



What is GFMC?

GFMC is the officially unnamed Green’s Function
Monte Carlo code of Steve Pieper et al. for
modeling of nucleon-nucleon interactions in atomic
nuclei.

Monte Carlo integration is loosely-coupled

GFMC is defined by a task pool and some small
global state for convergence

Originally used a master-worker but the worker
becomes overwhelmed with task-delegation

ADLB implements a distributed shared
task-queue to ameliorate the communication
associated with delegation

Jeff Hammond Programming Models



What is GPAW?

GPAW is a real-space density-function theory (DFT)
code for material science applications.

GPAW solves the Kohn-Sham equations iteratively,
which involves a whole lot of dense linear algebra
(matrix-matrix multiplication aka GEMM, inverse
Cholesky and diagonalization aka DIAG).

Dense linear algebra can be easy (GEMM) or hard
(DIAG). GEMM is easy because it is data-parallel
whereas DIAG is highly synchronous.

Jeff Hammond Programming Models



Anatomy of GEMM

Matrix-matrix multiplication is effectively
data-parallel:

forall i,j,k

C(i,j) += A(i,k) * B(k,j)

Scalar multiplication leads to terrible performance,
so do a bunch of local computation at once with
BLAS:

forall I,J,K (tiles)

C(I,J) += A(I,K) * B(K,j) ← DGEMM

If the tiles are distributed on a process-grid, scaling
is straightforward.

Jeff Hammond Programming Models



What is NWChem?

NWChem implements a myriad of computational
chemistry methods using Global Arrays.

Assumption: Chemists 6= (good) programmers.

Solution 1: Make a parallel computer behave like a
serial computer. More on this later.

Solution 2: Have non-chemists implement
non-chemistry functionality as a black-box.

Solution 3: Implement all core objects with
C++-style abstraction but in F77.

Jeff Hammond Programming Models



Disguising a parallel computer

What programming complex algorithms in parallel
difficult?

Bookkeeping distributed data.
Ex: what process owns A(235)?

Managing two-sided communication.
Ex: you cannot request (receive) data without
knowing on the remote site to do a send — not
like a filesystem.

Irregular algorithms require dynamic
load-balancing. Can we do this without
master-worker?

Jeff Hammond Programming Models



The Global Arrays (GA) programming model

Arrays are distributed across machine automatically
— can be tiled arbitrarily for different uses.

Data is access via rank-free Put and Get in analogy
to read and write for files. Host process not
required to send (recv) data for Get (Put).

Many numerical computations require c+=a*b so
GA implement accumulate (Acc) as well. Shared
counters implemented using read-modify-write
(Rmw).

Provides parallel dense linear algebra via PeIGS,
ScaLAPACK or SRUMMA.

Jeff Hammond Programming Models



Using Global Arrays

<GA(double)> A,B,C, <buf(double)> a,b,c

<GA(int)> N=0, buf(int)> n

forall chunks/tiles of A, B, C:

Rmw(n←N++)

if test(n):

Get(a←A)

Get(b←B)

c = foo(a,b)

Acc(c→C)

Jeff Hammond Programming Models



Why use Global Arrays?

Provides trivial way to implement global state.

Memory-bound and want to avoid I/O.

Unpredictable communication patterns are easy
with one-sided.

Avoid bookkeeping global data entirely.

Jeff Hammond Programming Models



What is NAMD?

NAMD is a really popular molecular dynamics (MD)
code. Physically-meaningful MD requires 106−9

timesteps because atomic timescale is femtoseconds.

There are 86,400 seconds in a day. If you want 106

timesteps, that is 11.5 days. If one wants
millisecond MD, a single timestep must take
approximately 1 microsecond.

Jeff Hammond Programming Models



Challenges for NAMD

MD becomes load-imbalanced quickly as atoms
move. Who owns the atom if it moves from one
domain to another?

Global communication is required to do long-range
Coulomb interactions.

Remember that load-imbalance + global
communication = very bad.

Jeff Hammond Programming Models



What is Charm++

Charm++ is the parallel run-time system
co-designed with NAMD.

Unlike MPI or GA, Charm++ has a message-driven
execution model.

Message-driven execution makes sense if
communication is more important than
computation.

Charm++ load-balances iteratively by moving tasks
around as needed.

Jeff Hammond Programming Models



What is Charm++

Charm++ is the parallel run-time system
co-designed with NAMD.

Unlike MPI or GA, Charm++ has a message-driven
execution model.

Message-driven execution makes sense if
communication is more important than
computation.

Charm++ load-balances iteratively by moving tasks
around as needed.

Jeff Hammond Programming Models



Conclusions

Jeff Hammond Programming Models



Factors which affect parallelism

How regular is your computation?

How regular is your communication?

What are your communication patterns?

Do you actually understand what your algorithm is
doing?

Jeff Hammond Programming Models



Commence tomato throwing!

Jeff Hammond Programming Models


